Printed Pages - 5

Roll No.

322554(22)

B. E. (Fifth Semester) Examination,

Nov.-Dec. 2021

(New Scheme)

(CSE Engg. Branch)

THEORY OF COMPUTATION

Time Allowed: Three hours

Maximum Marks: 80

Minimum Pass Marks: 28

Note: All questions are compulsory. Part (a) is compulsory, answer any two parts from (b), (c) & (d) of each question. Part (a) carries 2 marks and part (b), (c) & (d) carries 7 marks.

Unit-I

- 1. (a) Differentiate between NFA and DFA.
- 2
- (b) Construct a Moore machine equivalent to the Mealy machine *M* defined by the table :

7

P. S.	$\mathbf{a} = 0$		a = 1	
	State	Output	State	Output
$\rightarrow q_1$	q_1	1	q_2	0
q_2	q_4	CHARGE	q_4	1
q_3	q_2	1	q_3	1
q ₄	q_3	(ms 0 ams	q_1	JF 1

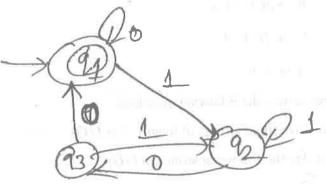
- (c) Define Myhill-nerode theorem. Explain properties of FSM.
- (d) Write short notes on:

 $2 \times 3\frac{1}{2} = 7$

2

7

- (i) Two way finite Automata
- (ii) Mealy machines


Unit-II

- 2. (a) Define pumping Lemma for regular sets.
 - (b) Construct Transition diagram for following regular grammar
 - (i) $A_0 \rightarrow aA_1, A_1 \rightarrow bA_1, A_1 \rightarrow a, A_1 \rightarrow bA_0$
 - (ii) $S \rightarrow aS/a$
 - (c) Construct finite Automata equivalent to the regular expression

$$(0+1)*(00+11)(0+1)*$$

.322554(22)

(d) Calculate regular expression from the transition system.

Unit-III

- 3. (a) Write the types of grammar with their accepting machine.
 - (b) What do you mean by ambiguity in context free grammar. If G is grammar $S \rightarrow SbS/a$ then show that G is ambiguous.
 - (c) Convert the following productions into GNF.

$$S \rightarrow AA/a$$

$$A \rightarrow SS/b$$

(d) Consider a CFG, G with the following productions: 7

 $B \rightarrow aCb/bCa$

 $C \rightarrow ACA/A$

 $A \rightarrow a/b$

and answer the following questions:

- (a) Give three strings of length 7 in L(G)
- (b) Are the following strings in L(G)
 - (i) aaa
 - (ii) bbb
 - (iii) aba
 - (iv) abb
- (c) True or false: $c \Rightarrow bab$
- (d) True or false : $c \stackrel{*}{\Rightarrow} bab$
- (e) True or false : $c \Rightarrow abab$
- (f) True or false : $c \Rightarrow AAA$
- (g) Is \wedge in L(G)

Unit-IV

4. (a) Define non deterministic pda.

2

[5]

- (b) Design a TM, M which accepts language
 - $L = \left\{ 1^n 2^n 3^n / n \ge 1 \right\}$
- (c) Explain the acceptance by pda.
- (d) Construct a pda accepting $\{a^nb^mc^n/m, n \ge 1\}$ by null store.

Unit-V

- 5. (a) Define partial function and initial function.
 - (b) What is computation? Explain Turing model of computation.
 - (c) What is turing computation function construct turing machine for zero function?
 - (d) Show that f(x,y) = x * y and $f(x,y) = x^y$ is primitive recursive function.